3.10.2 \(\int \frac {\sqrt {c-d x^2}}{(e x)^{5/2} (a-b x^2)^2} \, dx\) [902]

Optimal. Leaf size=355 \[ -\frac {7 \sqrt {c-d x^2}}{6 a^2 e (e x)^{3/2}}+\frac {\sqrt {c-d x^2}}{2 a e (e x)^{3/2} \left (a-b x^2\right )}+\frac {7 \sqrt [4]{c} d^{3/4} \sqrt {1-\frac {d x^2}{c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{6 a^2 e^{5/2} \sqrt {c-d x^2}}+\frac {\sqrt [4]{c} (7 b c-5 a d) \sqrt {1-\frac {d x^2}{c}} \Pi \left (-\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}};\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{4 a^3 \sqrt [4]{d} e^{5/2} \sqrt {c-d x^2}}+\frac {\sqrt [4]{c} (7 b c-5 a d) \sqrt {1-\frac {d x^2}{c}} \Pi \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}};\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{4 a^3 \sqrt [4]{d} e^{5/2} \sqrt {c-d x^2}} \]

[Out]

-7/6*(-d*x^2+c)^(1/2)/a^2/e/(e*x)^(3/2)+1/2*(-d*x^2+c)^(1/2)/a/e/(e*x)^(3/2)/(-b*x^2+a)+7/6*c^(1/4)*d^(3/4)*El
lipticF(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2),I)*(1-d*x^2/c)^(1/2)/a^2/e^(5/2)/(-d*x^2+c)^(1/2)+1/4*c^(1/4)*(-5*
a*d+7*b*c)*EllipticPi(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2),-b^(1/2)*c^(1/2)/a^(1/2)/d^(1/2),I)*(1-d*x^2/c)^(1/2
)/a^3/d^(1/4)/e^(5/2)/(-d*x^2+c)^(1/2)+1/4*c^(1/4)*(-5*a*d+7*b*c)*EllipticPi(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/
2),b^(1/2)*c^(1/2)/a^(1/2)/d^(1/2),I)*(1-d*x^2/c)^(1/2)/a^3/d^(1/4)/e^(5/2)/(-d*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.44, antiderivative size = 355, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 9, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {477, 480, 597, 537, 230, 227, 418, 1233, 1232} \begin {gather*} \frac {\sqrt [4]{c} \sqrt {1-\frac {d x^2}{c}} (7 b c-5 a d) \Pi \left (-\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}};\left .\text {ArcSin}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{4 a^3 \sqrt [4]{d} e^{5/2} \sqrt {c-d x^2}}+\frac {\sqrt [4]{c} \sqrt {1-\frac {d x^2}{c}} (7 b c-5 a d) \Pi \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}};\left .\text {ArcSin}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{4 a^3 \sqrt [4]{d} e^{5/2} \sqrt {c-d x^2}}+\frac {7 \sqrt [4]{c} d^{3/4} \sqrt {1-\frac {d x^2}{c}} F\left (\left .\text {ArcSin}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{6 a^2 e^{5/2} \sqrt {c-d x^2}}-\frac {7 \sqrt {c-d x^2}}{6 a^2 e (e x)^{3/2}}+\frac {\sqrt {c-d x^2}}{2 a e (e x)^{3/2} \left (a-b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - d*x^2]/((e*x)^(5/2)*(a - b*x^2)^2),x]

[Out]

(-7*Sqrt[c - d*x^2])/(6*a^2*e*(e*x)^(3/2)) + Sqrt[c - d*x^2]/(2*a*e*(e*x)^(3/2)*(a - b*x^2)) + (7*c^(1/4)*d^(3
/4)*Sqrt[1 - (d*x^2)/c]*EllipticF[ArcSin[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], -1])/(6*a^2*e^(5/2)*Sqrt[c -
d*x^2]) + (c^(1/4)*(7*b*c - 5*a*d)*Sqrt[1 - (d*x^2)/c]*EllipticPi[-((Sqrt[b]*Sqrt[c])/(Sqrt[a]*Sqrt[d])), ArcS
in[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], -1])/(4*a^3*d^(1/4)*e^(5/2)*Sqrt[c - d*x^2]) + (c^(1/4)*(7*b*c - 5*
a*d)*Sqrt[1 - (d*x^2)/c]*EllipticPi[(Sqrt[b]*Sqrt[c])/(Sqrt[a]*Sqrt[d]), ArcSin[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*S
qrt[e])], -1])/(4*a^3*d^(1/4)*e^(5/2)*Sqrt[c - d*x^2])

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 230

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + b*(x^4/a)]/Sqrt[a + b*x^4], Int[1/Sqrt[1 + b*(x^4/
a)], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] &&  !GtQ[a, 0]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1
- Rt[-d/c, 2]*x^2)), x], x] + Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a,
 b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 477

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = Deno
minator[m]}, Dist[k/e, Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/e^n))^p*(c + d*(x^(k*n)/e^n))^q, x], x, (e*
x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && FractionQ[m] && Intege
rQ[p]

Rule 480

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-(e*x)^
(m + 1))*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*e*n*(p + 1))), x] + Dist[1/(a*n*(p + 1)), Int[(e*x)^m*(a + b*x^
n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m + n*(p + 1) + 1) + d*(m + n*(p + q + 1) + 1)*x^n, x], x], x] /; FreeQ
[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && LtQ[0, q, 1] && IntBinomialQ[a, b,
 c, d, e, m, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 597

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 1232

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[
a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]

Rule 1233

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[Sqrt[1 + c*(x^4/a)]/Sqrt[a + c*x^4]
, Int[1/((d + e*x^2)*Sqrt[1 + c*(x^4/a)]), x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {c-d x^2}}{(e x)^{5/2} \left (a-b x^2\right )^2} \, dx &=\frac {2 \text {Subst}\left (\int \frac {\sqrt {c-\frac {d x^4}{e^2}}}{x^4 \left (a-\frac {b x^4}{e^2}\right )^2} \, dx,x,\sqrt {e x}\right )}{e}\\ &=\frac {\sqrt {c-d x^2}}{2 a e (e x)^{3/2} \left (a-b x^2\right )}-\frac {\text {Subst}\left (\int \frac {-7 c+\frac {5 d x^4}{e^2}}{x^4 \left (a-\frac {b x^4}{e^2}\right ) \sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{2 a e}\\ &=-\frac {7 \sqrt {c-d x^2}}{6 a^2 e (e x)^{3/2}}+\frac {\sqrt {c-d x^2}}{2 a e (e x)^{3/2} \left (a-b x^2\right )}+\frac {\text {Subst}\left (\int \frac {\frac {c (21 b c-8 a d)}{e^2}-\frac {7 b c d x^4}{e^4}}{\left (a-\frac {b x^4}{e^2}\right ) \sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{6 a^2 c e}\\ &=-\frac {7 \sqrt {c-d x^2}}{6 a^2 e (e x)^{3/2}}+\frac {\sqrt {c-d x^2}}{2 a e (e x)^{3/2} \left (a-b x^2\right )}+\frac {(7 d) \text {Subst}\left (\int \frac {1}{\sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{6 a^2 e^3}+\frac {(7 b c-5 a d) \text {Subst}\left (\int \frac {1}{\left (a-\frac {b x^4}{e^2}\right ) \sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{2 a^2 e^3}\\ &=-\frac {7 \sqrt {c-d x^2}}{6 a^2 e (e x)^{3/2}}+\frac {\sqrt {c-d x^2}}{2 a e (e x)^{3/2} \left (a-b x^2\right )}+\frac {(7 b c-5 a d) \text {Subst}\left (\int \frac {1}{\left (1-\frac {\sqrt {b} x^2}{\sqrt {a} e}\right ) \sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{4 a^3 e^3}+\frac {(7 b c-5 a d) \text {Subst}\left (\int \frac {1}{\left (1+\frac {\sqrt {b} x^2}{\sqrt {a} e}\right ) \sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{4 a^3 e^3}+\frac {\left (7 d \sqrt {1-\frac {d x^2}{c}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {d x^4}{c e^2}}} \, dx,x,\sqrt {e x}\right )}{6 a^2 e^3 \sqrt {c-d x^2}}\\ &=-\frac {7 \sqrt {c-d x^2}}{6 a^2 e (e x)^{3/2}}+\frac {\sqrt {c-d x^2}}{2 a e (e x)^{3/2} \left (a-b x^2\right )}+\frac {7 \sqrt [4]{c} d^{3/4} \sqrt {1-\frac {d x^2}{c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{6 a^2 e^{5/2} \sqrt {c-d x^2}}+\frac {\left ((7 b c-5 a d) \sqrt {1-\frac {d x^2}{c}}\right ) \text {Subst}\left (\int \frac {1}{\left (1-\frac {\sqrt {b} x^2}{\sqrt {a} e}\right ) \sqrt {1-\frac {d x^4}{c e^2}}} \, dx,x,\sqrt {e x}\right )}{4 a^3 e^3 \sqrt {c-d x^2}}+\frac {\left ((7 b c-5 a d) \sqrt {1-\frac {d x^2}{c}}\right ) \text {Subst}\left (\int \frac {1}{\left (1+\frac {\sqrt {b} x^2}{\sqrt {a} e}\right ) \sqrt {1-\frac {d x^4}{c e^2}}} \, dx,x,\sqrt {e x}\right )}{4 a^3 e^3 \sqrt {c-d x^2}}\\ &=-\frac {7 \sqrt {c-d x^2}}{6 a^2 e (e x)^{3/2}}+\frac {\sqrt {c-d x^2}}{2 a e (e x)^{3/2} \left (a-b x^2\right )}+\frac {7 \sqrt [4]{c} d^{3/4} \sqrt {1-\frac {d x^2}{c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{6 a^2 e^{5/2} \sqrt {c-d x^2}}+\frac {\sqrt [4]{c} (7 b c-5 a d) \sqrt {1-\frac {d x^2}{c}} \Pi \left (-\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}};\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{4 a^3 \sqrt [4]{d} e^{5/2} \sqrt {c-d x^2}}+\frac {\sqrt [4]{c} (7 b c-5 a d) \sqrt {1-\frac {d x^2}{c}} \Pi \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}};\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{4 a^3 \sqrt [4]{d} e^{5/2} \sqrt {c-d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.
time = 10.15, size = 181, normalized size = 0.51 \begin {gather*} \frac {x \left (5 a \left (4 a-7 b x^2\right ) \left (c-d x^2\right )+5 (-21 b c+8 a d) x^2 \left (a-b x^2\right ) \sqrt {1-\frac {d x^2}{c}} F_1\left (\frac {1}{4};\frac {1}{2},1;\frac {5}{4};\frac {d x^2}{c},\frac {b x^2}{a}\right )+7 b d x^4 \left (a-b x^2\right ) \sqrt {1-\frac {d x^2}{c}} F_1\left (\frac {5}{4};\frac {1}{2},1;\frac {9}{4};\frac {d x^2}{c},\frac {b x^2}{a}\right )\right )}{30 a^3 (e x)^{5/2} \left (-a+b x^2\right ) \sqrt {c-d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c - d*x^2]/((e*x)^(5/2)*(a - b*x^2)^2),x]

[Out]

(x*(5*a*(4*a - 7*b*x^2)*(c - d*x^2) + 5*(-21*b*c + 8*a*d)*x^2*(a - b*x^2)*Sqrt[1 - (d*x^2)/c]*AppellF1[1/4, 1/
2, 1, 5/4, (d*x^2)/c, (b*x^2)/a] + 7*b*d*x^4*(a - b*x^2)*Sqrt[1 - (d*x^2)/c]*AppellF1[5/4, 1/2, 1, 9/4, (d*x^2
)/c, (b*x^2)/a]))/(30*a^3*(e*x)^(5/2)*(-a + b*x^2)*Sqrt[c - d*x^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(2303\) vs. \(2(267)=534\).
time = 0.13, size = 2304, normalized size = 6.49

method result size
elliptic \(\frac {\sqrt {\left (-d \,x^{2}+c \right ) e x}\, \left (\frac {b \sqrt {-d e \,x^{3}+c e x}}{2 e^{3} a^{2} \left (-b \,x^{2}+a \right )}-\frac {2 \sqrt {-d e \,x^{3}+c e x}}{3 e^{3} a^{2} x^{2}}+\frac {7 \sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, \frac {\sqrt {2}}{2}\right )}{12 a^{2} e^{2} \sqrt {-d e \,x^{3}+c e x}}+\frac {5 \sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, \EllipticPi \left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, -\frac {\sqrt {c d}}{d \left (-\frac {\sqrt {c d}}{d}-\frac {\sqrt {a b}}{b}\right )}, \frac {\sqrt {2}}{2}\right )}{8 a \,e^{2} \sqrt {a b}\, \sqrt {-d e \,x^{3}+c e x}\, \left (-\frac {\sqrt {c d}}{d}-\frac {\sqrt {a b}}{b}\right )}-\frac {7 \sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, \EllipticPi \left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, -\frac {\sqrt {c d}}{d \left (-\frac {\sqrt {c d}}{d}-\frac {\sqrt {a b}}{b}\right )}, \frac {\sqrt {2}}{2}\right ) b c}{8 a^{2} e^{2} \sqrt {a b}\, d \sqrt {-d e \,x^{3}+c e x}\, \left (-\frac {\sqrt {c d}}{d}-\frac {\sqrt {a b}}{b}\right )}-\frac {5 \sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, \EllipticPi \left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, -\frac {\sqrt {c d}}{d \left (-\frac {\sqrt {c d}}{d}+\frac {\sqrt {a b}}{b}\right )}, \frac {\sqrt {2}}{2}\right )}{8 a \,e^{2} \sqrt {a b}\, \sqrt {-d e \,x^{3}+c e x}\, \left (-\frac {\sqrt {c d}}{d}+\frac {\sqrt {a b}}{b}\right )}+\frac {7 \sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, \EllipticPi \left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, -\frac {\sqrt {c d}}{d \left (-\frac {\sqrt {c d}}{d}+\frac {\sqrt {a b}}{b}\right )}, \frac {\sqrt {2}}{2}\right ) b c}{8 a^{2} e^{2} \sqrt {a b}\, d \sqrt {-d e \,x^{3}+c e x}\, \left (-\frac {\sqrt {c d}}{d}+\frac {\sqrt {a b}}{b}\right )}\right )}{\sqrt {e x}\, \sqrt {-d \,x^{2}+c}}\) \(784\)
default \(\text {Expression too large to display}\) \(2304\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-d*x^2+c)^(1/2)/(e*x)^(5/2)/(-b*x^2+a)^2,x,method=_RETURNVERBOSE)

[Out]

-1/24*b*d*(21*2^(1/2)*EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b+(a*b)^(1/2
)*d),1/2*2^(1/2))*b^3*c^2*x^3*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*(-d
*x/(c*d)^(1/2))^(1/2)-21*2^(1/2)*EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b
-(a*b)^(1/2)*d),1/2*2^(1/2))*b^3*c^2*x^3*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2)
)^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)+12*a*b*c*d*x^2*(a*b)^(1/2)+28*b^2*c*d*x^4*(a*b)^(1/2)+16*a*b*c^2*(a*b)^(1/2)+
16*a^2*d^2*x^2*(a*b)^(1/2)-28*b^2*c^2*x^2*(a*b)^(1/2)-16*a^2*c*d*(a*b)^(1/2)-28*a*b*d^2*x^4*(a*b)^(1/2)-21*2^(
1/2)*EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b+(a*b)^(1/2)*d),1/2*2^(1/2))
*b^2*c*x^3*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*(-d*x/(c*d)^(1/2))^(1/
2)*(c*d)^(1/2)*(a*b)^(1/2)+15*2^(1/2)*EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1
/2)*b-(a*b)^(1/2)*d),1/2*2^(1/2))*a*b^2*c*d*x^3*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d
)^(1/2))^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)-21*2^(1/2)*EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2
)*b/((c*d)^(1/2)*b-(a*b)^(1/2)*d),1/2*2^(1/2))*b^2*c*x^3*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1
/2))/(c*d)^(1/2))^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)*(c*d)^(1/2)*(a*b)^(1/2)+14*2^(1/2)*EllipticF(((d*x+(c*d)^(1/2
))/(c*d)^(1/2))^(1/2),1/2*2^(1/2))*a^2*d*x*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/
2))^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)*(c*d)^(1/2)*(a*b)^(1/2)+15*2^(1/2)*EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2
))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b+(a*b)^(1/2)*d),1/2*2^(1/2))*a^2*b*c*d*x*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^
(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)-15*2^(1/2)*EllipticPi(((d*x+(c*d)^(1/2))
/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b+(a*b)^(1/2)*d),1/2*2^(1/2))*a^2*d*x*((d*x+(c*d)^(1/2))/(c*d)^
(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)*(c*d)^(1/2)*(a*b)^(1/2)-15*2^(1/2
)*EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b-(a*b)^(1/2)*d),1/2*2^(1/2))*a^
2*b*c*d*x*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*(-d*x/(c*d)^(1/2))^(1/2
)-15*2^(1/2)*EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b-(a*b)^(1/2)*d),1/2*
2^(1/2))*a^2*d*x*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*(-d*x/(c*d)^(1/2
))^(1/2)*(c*d)^(1/2)*(a*b)^(1/2)+14*2^(1/2)*EllipticF(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),1/2*2^(1/2))*b^2*c
*x^3*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)*(c*
d)^(1/2)*(a*b)^(1/2)-15*2^(1/2)*EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b+
(a*b)^(1/2)*d),1/2*2^(1/2))*a*b^2*c*d*x^3*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2
))^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)-21*2^(1/2)*EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((
c*d)^(1/2)*b+(a*b)^(1/2)*d),1/2*2^(1/2))*a*b^2*c^2*x*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))
/(c*d)^(1/2))^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)+21*2^(1/2)*EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)
^(1/2)*b/((c*d)^(1/2)*b-(a*b)^(1/2)*d),1/2*2^(1/2))*a*b^2*c^2*x*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(
c*d)^(1/2))/(c*d)^(1/2))^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)-14*2^(1/2)*EllipticF(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(
1/2),1/2*2^(1/2))*a*b*d*x^3*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*(-d*x
/(c*d)^(1/2))^(1/2)*(c*d)^(1/2)*(a*b)^(1/2)+15*2^(1/2)*EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^
(1/2)*b/((c*d)^(1/2)*b+(a*b)^(1/2)*d),1/2*2^(1/2))*a*b*d*x^3*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d
)^(1/2))/(c*d)^(1/2))^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)*(c*d)^(1/2)*(a*b)^(1/2)+15*2^(1/2)*EllipticPi(((d*x+(c*d)
^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b-(a*b)^(1/2)*d),1/2*2^(1/2))*a*b*d*x^3*((d*x+(c*d)^(1/2
))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)*(c*d)^(1/2)*(a*b)^(1/2)-
14*2^(1/2)*EllipticF(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),1/2*2^(1/2))*a*b*c*x*((d*x+(c*d)^(1/2))/(c*d)^(1/2)
)^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)*(c*d)^(1/2)*(a*b)^(1/2)+21*2^(1/2)*Ell
ipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b+(a*b)^(1/2)*d),1/2*2^(1/2))*a*b*c*x
*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)*(c*d)^(
1/2)*(a*b)^(1/2)+21*2^(1/2)*EllipticPi(((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2),(c*d)^(1/2)*b/((c*d)^(1/2)*b-(a*b
)^(1/2)*d),1/2*2^(1/2))*a*b*c*x*((d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*((-d*x+(c*d)^(1/2))/(c*d)^(1/2))^(1/2)*(
-d*x/(c*d)^(1/2))^(1/2)*(c*d)^(1/2)*(a*b)^(1/2))/(-d*x^2+c)^(1/2)/x/a^2/e^2/(e*x)^(1/2)/(a*b)^(1/2)/((c*d)^(1/
2)*b+(a*b)^(1/2)*d)/((c*d)^(1/2)*b-(a*b)^(1/2)*...

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-d*x^2+c)^(1/2)/(e*x)^(5/2)/(-b*x^2+a)^2,x, algorithm="maxima")

[Out]

e^(-5/2)*integrate(sqrt(-d*x^2 + c)/((b*x^2 - a)^2*x^(5/2)), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-d*x^2+c)^(1/2)/(e*x)^(5/2)/(-b*x^2+a)^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c - d x^{2}}}{\left (e x\right )^{\frac {5}{2}} \left (- a + b x^{2}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-d*x**2+c)**(1/2)/(e*x)**(5/2)/(-b*x**2+a)**2,x)

[Out]

Integral(sqrt(c - d*x**2)/((e*x)**(5/2)*(-a + b*x**2)**2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-d*x^2+c)^(1/2)/(e*x)^(5/2)/(-b*x^2+a)^2,x, algorithm="giac")

[Out]

integrate(sqrt(-d*x^2 + c)*e^(-5/2)/((b*x^2 - a)^2*x^(5/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {c-d\,x^2}}{{\left (e\,x\right )}^{5/2}\,{\left (a-b\,x^2\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - d*x^2)^(1/2)/((e*x)^(5/2)*(a - b*x^2)^2),x)

[Out]

int((c - d*x^2)^(1/2)/((e*x)^(5/2)*(a - b*x^2)^2), x)

________________________________________________________________________________________